Hyers-Ulam-Rassias stability of high-dimensional quaternion impulsive fuzzy dynamic equations on time scales

نویسندگان

چکیده

<p style='text-indent:20px;'>In this paper, the Hyers-Ulam-Rassias stability of high-dimensional quaternion fuzzy dynamic equations with impulses is first considered on time scales. Some fundamental calculus results functions in space are established. Based it, some sufficient conditions obtained to guarantee impulsive case. Moreover, several examples provided show feasibility our main various types scales.</p>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ulam-Hyers-Rassias stability for fuzzy fractional integral equations

In this paper, we study the fuzzy Ulam-Hyers-Rassias stability for two kinds of fuzzy fractional integral equations by employing the fixed point technique.

متن کامل

Hyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear integral equations with delay

In this paper we are going to study the Hyers{Ulam{Rassias typesof stability for nonlinear, nonhomogeneous Volterra integral equations with delayon nite intervals.

متن کامل

HYERS-ULAM-RASSIAS STABILITY OF FUNCTIONAL EQUATIONS ON FUZZY NORMED LINER SPACES

In this paper, we use the denition of fuzzy normed spaces givenby Bag and Samanta and the behaviors of solutions of the additive functionalequation are described. The Hyers-Ulam stability problem of this equationis discussed and theorems concerning the Hyers-Ulam-Rassias stability of theequation are proved on fuzzy normed linear space.

متن کامل

Fuzzy versions of Hyers-Ulam-Rassias theorem

We introduce three reasonable versions of fuzzy approximately additive functions in fuzzy normed spaces. More precisely, we show under some suitable conditions that an approximately additive function can be approximated by an additive mapping in a fuzzy sense. © 2007 Elsevier B.V. All rights reserved. MSC: primary 46S40secondary 39B52 39B82 26E50 46S50

متن کامل

Hyers-Ulam-Rassias stability of generalized derivations

One of the interesting questions in the theory of functional equations concerning the problem of the stability of functional equations is as follows: when is it true that a mapping satisfying a functional equation approximately must be close to an exact solution of the given functional equation? The first stability problem was raised by Ulam during his talk at the University of Wisconsin in 194...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S

سال: 2022

ISSN: ['1937-1632', '1937-1179']

DOI: https://doi.org/10.3934/dcdss.2021041